1. D. Rafalskyi, J. Martínez Martínez, L. Habl, E. Zorzoli Rossi, P. Proynov, A. Boré, T. Baret, A. Poyet, T. Lafleur, S. Dudin and A. Aanesland
In-orbit demonstration of an iodine electric propulsion system
Nature (2021).
[https://doi.org/10.1038/s41586-021-04015-y]
2. T. Lafleur and C. Corr
Characterization of a radio-frequency inductively coupled electrothermal plasma thruster
Journal of Applied Physics, vol. 130, no. 4, p. 043304 (2021).
[https://doi.org/10.1063/5.0056124]
3. L. Habl, D. Rafalskyi, and T. Lafleur
Secondary electron emission due to multi-species iodine ion bombardment of different target materials
Journal of Applied Physics, vol. 129, no. 15, p. 153302 (2021).
[https://doi.org/10.1063/5.0048447]
4. L. Habl, T. Lafleur, D. Rafalskyi and P. Chabert
Plasma plume expansion with pulsed electron neutralization
Plasma Sources Science and Technology, vol. 30, no. 4, p. 045014 (2021).
[https://doi.org/10.1088/1361-6595/abf1d5]
5. T. Lafleur
Space-charge induced particle reflection between hybrid AC/DC biased electrodes
Plasma Sources Science and Technology, vol. 30, no. 5, p. 055018 (2021).
[https://doi.org/10.1088/1361-6595/abfbed]
6. T. Lafleur and N. Apffel
LEO constellation phasing using miniaturized low-thrust propulsion systems
Journal of Spacecraft and Rockets, in press (2020).
[https://doi.org/10.2514/1.A34905]
7. L. Habl, D. Rafalskyi, and T. Lafleur
Ion beam diagnostic for the assessment of miniaturized electric propulsion systems
Review of Scientific Instruments 91, 093501 (2020).
[https://doi.org/10.1063/5.0010589]
8. T. Lafleur
Space-charge limited current with a finite injection velocity revisited
Plasma Sources Science and Technology, vol. 29, no. 6, p. 065002 (2020).
[https://doi.org/10.1088/1361-6595/ab9069]
9. T. Lafleur and D. Rafalskyi
Radio-frequency biasing of ion acceleration grids
Plasma Sources Science and Technology 27, 125004 (2018).
[https://doi.org/10.1088/1361-6595/aaf2b8]
10. D. Rafalskyi and A. Aanesland
Coincident ion acceleration and electron extraction for space propulsion using the self-bias formed on a set of RF biased grids bounding a plasma source
Journal of Physics D: Applied Physics 47, 495203 (2014).
[https://doi.org/10.1088/0022-3727/47/49/495203]
1. L. Habl, D. Rafalskyi, E. Z. Rossi, and A. Aanesland
Planar probe array for bidimensional mapping of the ion flux profile of a miniaturized ion thruster
36th International Electric Propulsion Conference, University of Vienna, Austria, September 15-20, 2019, Paper IEPC-2019-777
[https://electricrocket.org/2019/777.pdf]
2. T. Lafleur, D. Rafalskyi, and A. Aanesland
Radio-frequency biasing of ion thruster grids
36th International Electric Propulsion Conference, University of Vienna, Austria, September 15-20, 2019, Paper IEPC-2019-145
[https://electricrocket.org/2019/145.pdf]
3. J. Martinez Martínez, D. Rafalskyi, A. Aanesland, X. Laurand, S. Vega Martinez, and G. Quinsac
An Off-Axis Iodine Propulsion System for the Robusta-3A Mission
Small Satellite Conference, Utah State University, 2020
[https://digitalcommons.usu.edu/smallsat/2020/all2020/154/]
4. J. Martínez Martínez, D. Rafalskyi, E. Zorzoli Rossi and A. Aanesland
Development, Qualification and First Flight Data of the Iodine Based Cold Gas Thruster for CubeSats
5th IAA Conference on University Satellite Missions and CubeSat Workshop, Rome, Italy, January 28- 31, 2020.
[https://doi.org/10.6084/m9.figshare.11931384 ]
5. J. Martínez Martínez, D. Rafalskyi and A. Aanesland
Development and Testing of the NPT30-I2 Iodine Ion Thruster
36th International Electric Propulsion Conference, University of Vienna, Austria,September 15-20, 2019, Paper IEPC-2019-811.
[https://doi.org/10.6084/m9.figshare.11931363.v1]